

The California Nitrogen Assessment:

Summary of the Statewide N Mass Balance

Ryan Haden, Ph.D. – Soil Scientist

Collaborators: A. White, K. Thomas, S. Brodt, B. Yeo
D. Liptzin, R. Dahlgren, T. Rosenstock, K. Scow, T. Tomich
Agricultural Sustainability Institute
University of California, Davis
June 4th, 2013

Why is N important to California?

Nitrogen is an essential nutrient for plant growth (often the most limiting nutrient)

Nitrogen fertilizers (both synthetic and organic) help to boost yield and sustain California agriculture.

- 50% of US fruits, nuts, and vegetables
- 21% of US dairy

Despite improvements in N management and technology in recent years, there remain important <u>tradeoffs</u> and <u>costs</u> associated with N loss to the environment.

- Water and Air Pollution
- Climate Change
- Human Health
- Biodiversity and habitat

Too little N limits ecosystem processes... too much transforms ecosystems profoundly.

Millennium Ecosystem Assessment (2005)

On a global scale from 1960 - 2000

- Food production more than doubled.
- Food supply/capita increased (but not everywhere).
- Flows of biologically available N doubled in terrestrial ecosystems due to human activities.
- Flows of phosphorus tripled.
- Humans have changed ecosystems more rapidly and extensively than in any time in history.
- Increased reactive N plays a role in:
 - Air and water pollution
 - Eutrophication
 - Biodiversity losses
 - Climate Change
 - Ozone depletion

What the California N Assessment Covers

Underlying & Direct Drivers of N Cycle in California

What factors and activities influence N cycling and flows into the state?

Statewide N Mass Balance for 2005

- How much N is coming into and out of the state?
- What are the main sources, flows and sinks?

Ecosystem Services: What are the positive and negative impacts of N on...

- Production of Food, Fiber & Fuel, Human Health
- Air Quality, Water Quality, Climate Change
- Cultural Values (e.g. recreation, landscape aesthetics, heritage, spiritual value...)

Future Scenarios Drawn from Stakeholder Engagement

What are the potential economic and policy futures for N in California?

Technical Practices & Policy Responses to Manage N in California

 What can we do as a society to minimize the impacts and maximize the benefits?

The Assessment Process

An assessment is a critical evaluation of scientific information for the purposes of guiding decisions on a complex, public issue.

Stakeholders define the topics and set assessment questions.

The *process* is as important as the results and outputs produced; credible, useful, and legitimate.

Assessing what is <u>not known</u> and <u>uncertainty</u> in the data is as important as understanding what is known. (Gap Analysis)

Peer reviewed (Researchers and Stakeholders).

Source: Millennium Ecosystem Assessment

A Mass Balance of California N, circa 2005

N Inputs = N Outputs + Δ N Storage

Flows of Nitrogen in California

Statewide N Inputs:

≈1.8 million tons N per year (1628 Gg N yr⁻¹) (1% of global human N inputs)

- Synthetic Fixation: 590 Gg
- Fossil Fuel Nox: 359 Gg
- Feed Imports: 200Gg
- Cropland Fixation: 196Gg
- Natural Lands Fixation: 139Gg
- Fiber Imports: 40Gg
- Atmospheric Import: 40Gg
- Fossil Fuel NH3: 36Gg
- Delta Water Imports: 18Gg
- Fossil Fuel N2O: 9Gg

Statewide N Outputs and Storage Excluding Groundwater Denitrification

≈1.8 million tons (1628 Gg N yr⁻¹)

NO₃ Groundwater Mass Balance:

(Net nitrate groundwater storage = 16% of total statewide N)

NO3 flows to groundwater
381 Gg N (419 thousand tons)

NO₃ outputs and net storage
381 Gg N (419 thousand tons)

Considerable <u>uncertainty</u> exists regarding the rate of groundwater denitrification in CA aquifers . $NO_3 \rightarrow N_2$ (some N_2O) Mediated by denitrifying bacteria (facultative anerobes) – requires labile organic C as an energy source (or S, Fe).

Statewide N Outputs and Storage: Net of Groundwater Denitrification

≈1.8 million tons (1628 Gg N yr⁻¹)

- NOx: 270 Gg
- Groundwater Storage: 257 Gg
- N2: 204 Gg
- NH3: 201 Gg
- Other Urban Storage: 122 Gg
- Natural Land storage: 91 Gg
- Sewage Discharge: 82 Gg
- Food: 79 Gg
- Urban Land storage: 76 Gg
- Landfills storage: 71 Gg
- Cropland storage: 65 Gg
- River Discharge: 39 Gg
- N2O: 38 Gg
- Reservoirs storage: 30 Gg

NH₃ Emissions:

221 thousand tons (201 Gg) N per year (Ammonia emissions = 12% of total statewide N inputs)

NH₃ emissions by source
Total: 267 Gg N (294 thousand tons)

NH₃ deposition and net emissions Total: 268 Gg N (295 thousand tons)

NH₄ emissions from livestock manure are based on CA-specific excretion estimate and EPA NH₄ emissions factor (high level of uncertainty due to limited field data)

Co-location of Air and Groundwater Pollution: Environmental Justice Concerns

NO₃ in groundwater

NH₃ volatilization

N₂O: A Greenhouse Gas & Ozone Depleting Substance (38 Gg N yr⁻¹) < 2% of statewide N output

Source: California Air Resources Board

Ozone Depleting Potential

Global Emissions of Ozone Depleting Substances

Source: Ravishankara et al. 2009

Using N Flows to Prioritize Our Response

Key Strategies for Addressing N-Related Problems

1. Reduce inputs of new N into the state - Cascading Benefits

- Efficiency of energy and transport sectors
- N use efficiency in cropping systems (fertilizer, manure, water management, N budgeting)
- N efficiency of livestock systems (feeding strategies)
- Food waste & human dietary preferences

2. Target transfers of N between environmental pools

- NO_x and PM emissions from stationary and mobile sources
- NO₃ leaching and runoff from croplands and urban lands
- Leaching and discharge from point sources (e.g. wastewater)
- NH₄ volatilization & N₂O emissions from soil

3. Adapt to an N-rich environment

- Drinking water treatment
- Alternative drinking water sources
- Crop N budgets that account for N in irrigation water

Concluding Thoughts

- Trade-offs are inevitable with many N management strategies
 - The problem of secondary "cross-media" transfers

Example: Incorporating manure into soil can reduce NH₃ volatilization, increase plant N uptake, but may also increase NO₃ leaching.

- Appropriate strategies will require an <u>integrated approach</u>
 that considers local economic and environmental conditions
- Solutions will require integrated monitoring and management across media (water, air, climate) at multiple geographic scales (field, farm, watershed, air basin).

Complexity + spatial dispersion → **high transaction costs**

Acknowledgements

Sustainable Agriculture Research

Project Funding

- Packard Foundation,
- Kearney Foundation for Soil Science
- Agricultural Sustainability Institute

Collaborating Institutions: Agricultural Sustainability Institute , Ag Issues Center, Center for Watershed Sciences, Institute for Water Resources, Kearney Foundation of Soil Science

Stakeholder Advisory Committee

•	California Rangeland Conservation Coalition	•	CDFA Fertilizer Research and Education Program (FREP)
•	Defenders of Wildlife	•	US Environmental Protection Agency (US EPA)
•	Citrus Research Board	•	San Joaquin Valley Air Pollution Control District
•	Organic Fertilizer Association of California (OFAC)	•	California Water Institute
		•	Fresh Express/Chiquita
•	CA Rice Producer's Group	•	Western United Dairymen
•	California Rice Commission	•	McCormack Sheep and Grain
•	California Farm Bureau Federation (CFBF)	•	International Plant Nutrition Institute (IPNI)
•	Almond Board of California	•	Environmental Defense Fund (EDF)
		•	Ag Services (Salinas)
•	Roots of Change	•	Western Plant Health Association
•	Sustainable Conservation	•	California Certified Organic Farmers (CCOF)
•	Community Water Center (CWC)	•	Rominger Brothers Farms
•	Western Growers Association	•	Community Alliance with Family Farmers (CAFF)
•	Hines Nurseries	•	Fetzer/Bonterra Vineyards
		•	California Regional Water Quality Control Board, Central
•	University of California Cooperative Extension (UCCE)		Coast Region
•	California Strawberry Commission	•	California Climate and Agriculture Network

To stay in touch, go to nitrogen.ucdavis.edu for updates.